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1 Whitening

Let X ∈ Rm be a zero-mean random vector. Whitening linearly transforms X into X̃, so that the

coordinates of X̃ are uncorrelated and have unit variance, i.e., E
[
X̃X̃T

]
= I. Let E

[
XXT

]
= V ΛV

be the eigendecomposition of the covariance, so that V TX is the projection of X onto its principal
directions, as in PCA. The whitening transform is given by X̃ = V Λ− 1

2V TX (i.e., each principal
component is scaled to have unit variance). Then

E
[
X̃X̃T

]
= V Λ− 1

2V TE
[
XXT

]
V Λ− 1

2V T

= V Λ− 1
2V TV ΛV TV Λ− 1

2V T

= I.

Figure 1: Example of whitening. Figure taken from https://www.cs.cmu.edu/~bapoczos/Classes/

ML10715_2015Fall/slides/ICA.pdf

Remark 1.1. The above procedure, with the rotation back (i.e., the leftmost multiplication by V ) is
sometimes called ZCA whitening. People often refer to whitening transform without the rotation back,
i.e., X̃ = Λ− 1

2V TX (known as PCA whitening). You will show in homework that if Xn = UΣV T is a

n× d data matrix, PCA whitening Λ− 1
2V TXT

n simply returns UT .
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2 Independent Component Analysis

Let S = (S1, . . . Sn)
T be a vector of latent independent random variables (i.e., Pr(S) = Pr(S1, . . . , Sn) =∏

i Pr(Si)), with zero mean and identity covariance. We observe n linear combinations of the latent
random variables, given by X = AS, where A ∈ Rn×n is unknown. Our goal is to recover S, by
computing W = A−1.

Figure 2: Difference between PCA and ICA. Figure taken from https://hastie.su.domains/Papers/

icatalk.pdf

Suppose that S1, . . . , Sn are all standard Gaussian. Note that for every matrix B, BS is also
Gaussian. Then for any n× n rotation matrix R (i.e., RRT = I) we have

Pr(RS) =
1

2π
exp

(
− STRTRS

(2RTR)−1

)
=

1

2π
exp

(
−STS

2I

)
,

which means that s cannot be recovered (or put another way, A is not identifiable). Hence from now on
we assume all variables are non-Gaussian.

3 Nongaussianity

Lyapunov’s version of the central limit theorem asserts that sum of independent (not necessarily identi-
cally distributed) random variables converges in distribution to normal. Thus, intuitively, a Xj , which
is the dot product between the j’th row of A and S is “more Gaussian” any of the Si’s.

We want to recover one of the latent factors Si, via Y := wTX = (wTA)S, which is a linear
combination of the latent factors as well. Hence, to recover one of the components, we wish to find w
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which maximizes the nonGaussianity of wTX. A popular measure for nonGaussianity is negentropy,
described next.

3.1 Negentropy

Definition 3.1. The differential entropy of a random variable Y with density f is h(Y ) :=
∫
f(y) log f(y)dy

Fact 3.2. A Gaussian random variable has the largest entropy among all random variables with equal
variance.

Definition 3.3 (Negentropy). The Negentropy of a random variable Y is defined as J(Y ) := h(YGauss)−
h(Y ), where h(YGauss) = 1

2 log (2πeσ) is the entropy of a Gaussian random variable with the same
variance as Y .

Computing h(Y ) is hard, as it requires a nonparametric estimation of the density f(Y ). Hence, one
typically use approximations for it. Specifically, negentropy is typically estimated by a non-quadratic
function G (e.g., G1(y) = y4, G2(y) = − exp(y2), as

J(Y ) ∝ ˜J(Y ) := (E[G(Y )]− E[G(Z)])
2
,

where Z is a standard Gaussian random variable.

4 Solving ICA

We will aim to find an approximation Y of S. Since independent components are uncorrelated, we can
restrict our search to matrices Yn which are orthogonal, hence whitening can use as a starting point.
Hence prior to the optimization, we preprocess the data matrix Xn by subtracting the mean from each
column, folowwing by whitening.

The minimization problem can be solved using standard methods, e.g., Newton’s method

w(t+1) = w(t) −
(
∇2J̃(X̃nw

(t))
)−1

∇J̃(X̃nw
(t)),

where expectations are replaced by sample means. For the first combination w, the requirement unit

variance Var
(
wT X̃

)
= 1, together with the fact that X̃ is whitened, is equivalent to requiring that

w is a unit vector. This can be implemented by rescaling wt after each iteration of the optimization
procedure. For subsequent combination, we want each vector w to live in the orthogonal complement
of the w’s found so far, which we can achieve by applying Gram-Shmidt:

wk ← wk −
k−1∑
i=1

wT
k wiwi.

Further Reading

A good ICA tutorial is https://www.cs.jhu.edu/~ayuille/courses/Stat161-261-Spring14/HyvO00-icatut.
pdf.
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